- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Forbey, Jennifer Sorensen (4)
-
Connelly, John W. (2)
-
Fremgen-Tarantino, Marcella R. (2)
-
Barber, Cristina (1)
-
Brittas, Rolf (1)
-
Camp, Meghan J. (1)
-
Caughlin, T. Trevor (1)
-
Clark, Patrick E. (1)
-
Davidson, Merry M. (1)
-
Frankel‐Bricker, Jonas (1)
-
Fremgen‐Tarantino, Marcella (1)
-
Frye, Graham G. (1)
-
Hayden, Eric J. (1)
-
Hudon, Stephanie F. (1)
-
Johansson, Örjan (1)
-
Kohl, Kevin D. (1)
-
Krakauer, Alan H. (1)
-
Maurer, Maya (1)
-
Newman, Julianne (1)
-
Nielsen, Ólafur K. (1)
-
- Filter by Editor
-
-
null (3)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fremgen-Tarantino, Marcella R.; Peña, Jacqueline J.; Connelly, John W.; Forbey, Jennifer Sorensen (, Journal of Arid Environments)
-
Fremgen-Tarantino, Marcella R.; Olsoy, Peter J.; Frye, Graham G.; Connelly, John W.; Krakauer, Alan H.; Patricelli, Gail L.; Forbey, Jennifer Sorensen (, Journal of Environmental Management)null (Ed.)
-
Hudon, Stephanie F.; Zaiats, Andrii; Roser, Anna; Roopsind, Anand; Barber, Cristina; Robb, Brecken C.; Pendleton, Britt A.; Camp, Meghan J.; Clark, Patrick E.; Davidson, Merry M.; et al (, Oikos)null (Ed.)Biodiversity science encompasses multiple disciplines and biological scales from molecules to landscapes. Nevertheless, biodiversity data are often analyzed separately with discipline‐specific methodologies, constraining resulting inferences to a single scale. To overcome this, we present a topic modeling framework to analyze community composition in cross‐disciplinary datasets, including those generated from metagenomics, metabolomics, field ecology and remote sensing. Using topic models, we demonstrate how community detection in different datasets can inform the conservation of interacting plants and herbivores. We show how topic models can identify members of molecular, organismal and landscape‐level communities that relate to wildlife health, from gut microbes to forage quality. We conclude with a future vision for how topic modeling can be used to design cross‐scale studies that promote a holistic approach to detect, monitor and manage biodiversity.more » « less
An official website of the United States government
